

Farm Sustainability Report

CARLSON FARMS

2024

Sustainability Report

TABLE OF CONTENTS

Natural Capital	2
Overview	2
Crop Summary	2
Farm Map	3
Land Use	4
Air	4
Farm GHG Absolute Emissions	4
Farm GHG Emissions Intensity	5
Commodity Benchmarks (no SOC)	5
Energy Use	5
N2O Mitigation	5
Soil	6
Soil Disturbance & Tillage	6
Soil Health History	6
Water	6
Water Use Efficiency	6
Pollution Prevention	6
4R Input Use	7
4R Fertilizer	7
Nutrient Use Efficieny (Partial Balance)	8
4R Manure & Composts	8
4R Soil Amendments (Lime & Gypsum)	8
4R Pesticides	8

Farm Sustainability Report

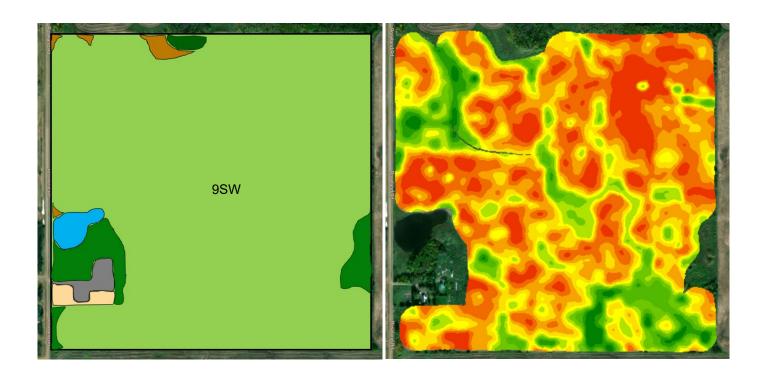
NATURAL CAPITAL

Overview	
Total land area	3760 acres
Total cultivated area	3365 acres
Ecoregion	Central Parkland
Watershed	Battle River & Bittern Lake
Dominant soil types	Dominantly black chernozems with some dark gray chernozems
Mean Annual precipitation	492 mm
Mean Annual Temperature	3.2 deg C
Location	53.05599, -113.17103

Carlson Farms is a family owned, 3365 acre dryland grain farm located in the central Alberta black soil zone. The farm is focused on annual grain production including canola, high quality CWRS wheat, malt barley, feed barley, and field peas. The farm converted from minimum tillage to a zero-till direct seeding system in 2011 to reduce erosion, improve soil health, build organic carbon, and maximize water use efficiency. Significant topography and some steep slopes make parts of the landscape susceptible to erosion, which are steadily being improved with retained crop residues and low disturbance seeding. The landscape is mostly hummocky with many internal depressions that don't drain to external waterways. Many of these depressional areas contain ephemeral water habitat for waterfowl such as ducks and migrating geese, while an equally significant area of natural forest and grasses provide habitat for other birds, mammals, and insects native to the parkland region of Alberta.

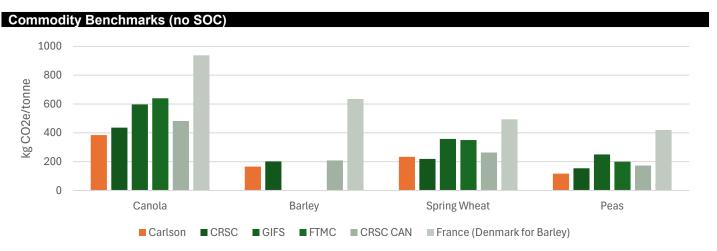
Current focus areas of improvement for the farm include:

- Improving grain production output per tonne of synthetic fertilizer used.
- Reduce nutrients applied in areas of excess soil fertility to minimize crop lodging, improve harvestability, grain quality, and yield, & reduce risk of nutrient runoff into nearby ponds and lakes.
- Use of targeted, multiple mode of action herbicides and increased seeding rates to manage weed populations and prevent herbicide resistance.
- Managing nutritional limitations to yield to improve water use efficiency.


2024 Crop Summary		
	Acres	Tonnes
Canola	1255	1435
Wheat	1335	2265
Barley	490	901
Peas	285	407

FARM MAP

	Estimated Area (ac)	Estimated Area (%)
Perennial vegetation - Managed	15	0.4
Native vegetation – Trees & shrubs	175	4.7
Native vegetation - Grassland	20	0.5
Wetlands	150	4.0
Waterways	5	0.1
Buildings, roadways, & developed areas	30	0.8
Annual cropland	3365	89.5
Total titled land area	3760	


Most recent date of deforestation >1 ha (2.47 ac): Nil since 2008. Minimum riparian area surrounding wetlands: 5 m

AIR

Farm GHG Absolute Emission		
	2024 (including SOC)	2024 (no SOC)
Mean Farm GHG emissions (cultivated area):	256 kg CO₂e / ac	379 kg CO₂e / ac
GHG emissions by commodity:		
Canola	316 kg CO₂e / ac	439 kg CO₂e / ac
Wheat	273 kg CO₂e / ac	396 kg CO₂e / ac
Barley	182 kg CO₂e / ac	305 kg CO₂e / ac
Peas	44 kg CO₂e / ac	166 kg CO₂e / ac

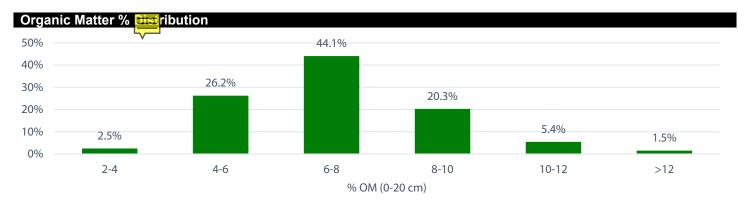
Farm GHG Emissions Intensity		
	2024 (including SOC)	2024 (no SOC)
Mean Farm GHG emissions (cultivated area):	172 kg CO ₂ e / t	255 kg CO ₂ e / t
GHG emissions by commodity:		
Canola	277 kg CO ₂ e / t	384 kg CO ₂ e / t
Wheat	161 kg CO ₂ e / t	233 kg CO ₂ e / t
Barley	99 kg CO ₂ e / t	166 kg CO ₂ e / t
Peas	31 kg CO ₂ e / t	117 kg CO₂e / t

Benchmark	Benchmark References			
Name	Region	Reference		
CRSC	Alberta Ecoregion 35	Canadian Roundtable for Sustainable Crops (CRSC), 2022 Crop Lifecycle Assessments		
GIFS	Saskatchewan	Global Institute for Food Security (GIFS) Carbon Life Cycle Analysis		
FTMC	Prairie Provinces	Field to Market Canada (FTMC), 2023 Emissions Report		
CRSC CAN	Canadian Weighted Avg	Canadian Roundtable for Sustainable Crops (CRSC), 2022 Crop Lifecycle Assessments		
Europe	France (Denmark for Barley)	GIFS Carbon LCA (see ref above); Barley: Sørensen, C. G., Halberg, N., Oudshoorn, F. W., Petersen, B. M., & Dalgaard, R. (2014). Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120, 2–14.		

Energy Use	
	2024
Fuel (diesel, petrol, oil)	61,145 L
Gas (methane, propane)	842 GJ
Electricity (grid)	37,574 kWh
Electricity (on-site renewables)	0 kWh

N₂O Mitigation	
	2024
% of synthetic nitrogen applied with a nitrification inhibitor or controlled release source (EEF):	17%
Total synthetic N fertilizer use per unit of	55 lbs
production:	N/t grain

Comments:


- The farm uses SWAT MAPS to apply variable rate nutrients based on zone soil tests, soil nutrient supply, and
 expected crop demand. On many fields this involves reducing applied nitrogen in high organic matter soils in lower
 landscape positions that would otherwise contribute a disproportionally high amount of nitrous oxide emissions if
 rates were not reduced.
- Variable rate seed is also used to apply higher seed rates in areas with high mortality, ensuring better crop establishment to use nitrogen applied, contributing to high NUE and less emissions.
- Field Peas are included in rotation as a nitrogen-fixing legume to reduce reliance on synthetic N sources and provide rotational diversity.
- ESN (polymer coated urea) is used as a portion of synthetic N source to reduce losses and N₂O emissions.

SOIL

Soil Disturbance & Tillage		
	2024	
Farm weighted mean:	7.5%	
By commodity:		
Canola	7.5%	
Barley	7.5%	
Wheat	7.5%	
Peas	7.5%	

Soil Health History	
	2024
Organic matter % (0-8")	6.1%
pH (0-8")	6.6
% salt affected area	13%
Cover crop area sown	0%

Comments:

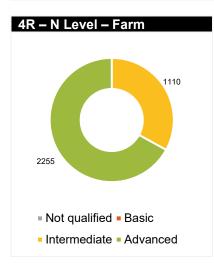
- Long-term use of zero till continues to benefit soil health and organic matter levels with many soils exceeding 8% organic matter (4.6% SOC).
- Cover crops are not used due to the very short growing season in this region and lack of frost-free days.
- Crop residue is retained on the field to provide ground cover, reduce erosion, and cycle carbon in the soil.

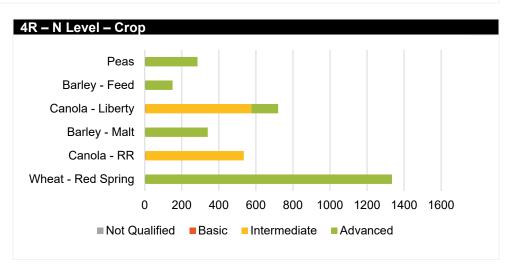
WATER

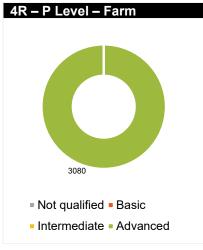
Water Use Efficiency	2024
Grain yield per unit of growing season rainfall + irrigation: Canola Wheat Barley Peas	kg/ac/mm GSR* 4.5 6.7 7.2 5.6
Irrigation scheduling based on one or more of following:	□ None□ One□ Two or more☑ Not applicable

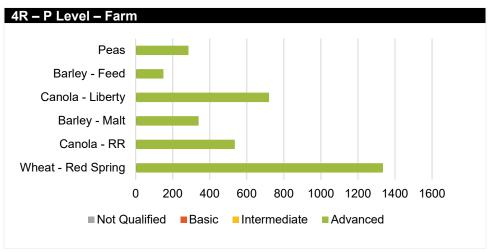
*254 mm of GSR (growing season rainfall)

204 min of Got (growing season raintain)	
Pollution Prevention	
	2024
% of cultivated area with high P runoff risk:	7%
Minimum riparian area surrounding wetlands:	□ < 5 m
	⊠ 5 – 30 m
	□ > 30 m
Do fuel and/or liquid fertilizer storage have suitable	⊠ Yes
containment areas in event of a spill or leak?	□ No
Is sprayer cleanout solution sprayed out on a bio-bed or	⊠ Yes
dilute solution on suitable land area?	□No




Comments:


- High P soils are primarily limited to lower landscape positions and depressions and applied P is significantly reduced in these areas to draw down soil P and limit P runoff in waterways that would contribute to eutrophication of local waterbodies.
- All fields have a minimum riparian area of 5 m typically consisting of tall native grasses that restrict soil, nutrient, or pesticide movement into surface waters.


4R INPUT

4R Fertilizer									
		4R Nitrogen Management			4R Phosphate Management				
Сгор	Total Acres	Not Qualified	Basic	Intermediate	Advanced	Not Qualified	Basic	Intermediate	Advanced
Wheat - Red Spring	1335	0	0	0	1335	0	0	0	1335
Canola - RR	535	0	0	535	0	0	0	0	535
Barley - Malt	340	0	0	0	340	0	0	0	340
Canola - Liberty	720	0	0	575	145	0	0	0	720
Barley - Feed	150	0	0	0	150	0	0	0	150
Peas	285	0	0	0	285	0	0	0	285

4R Soil Amendments (Lime & Gypsum)		
Not applicable		
Not qualified		
Basic		
Advanced	\boxtimes	

4R Manure & Compost			
Not applicable	\boxtimes		
Not qualified			
Basic			
Advanced			

4R Pesticides	
Not applicable	
Not qualified	
Basic	
Advanced	\boxtimes

Nutrient Use Efficiency (Partial Balance)			
$NUE_{PB} = R/(F+M+B+D)$	2024		
N	101%		
Р	92%		
K	149%		
S	49%		

Comments:

- Soil pH continues to be monitored closely and managed when necessary, using variable rate applications of pH amendments such as cement kiln dust a biproduct of the cement industry.
- Overall weighted farm average of 101% nitrogen use efficiency demonstrates exceptional efficiency, indicating a balance of exports vs. N applied to maintain soil carbon stocks.
- Phosphorus use efficiency is also near balanced to avoid unnecessary accumulation of soil P that would increase runoff into surface waterways.
- K use efficiency indicates a net soil mining of this nutrient.
- S use efficiency is relatively low. While not an environmental risk, it presents an opportunity for improvement. Reasonable targets for S are 70-90% to account for some leaching losses.
- In 2024 the farm has utilized SWAT CAMS on the sprayer and satellite imagery to identify ways to target pesticide use using variable rate applications. For example, fungicide use was reduced approximately 6% on 500 acres in 2024.

